Lesion-Induced Mutation in the Hyperthermophilic Archaeon Sulfolobus acidocaldarius and Its Avoidance by the Y-Family DNA Polymerase Dbh.
نویسندگان
چکیده
Hyperthermophilic archaea offer certain advantages as models of genome replication, and Sulfolobus Y-family polymerases Dpo4 (S. solfataricus) and Dbh (S. acidocaldarius) have been studied intensively in vitro as biochemical and structural models of trans-lesion DNA synthesis (TLS). However, the genetic functions of these enzymes have not been determined in the native context of living cells. We developed the first quantitative genetic assays of replication past defined DNA lesions and error-prone motifs in Sulfolobus chromosomes and used them to measure the efficiency and accuracy of bypass in normal and dbh(-) strains of Sulfolobus acidocaldarius. Oligonucleotide-mediated transformation allowed low levels of abasic-site bypass to be observed in S. acidocaldarius and demonstrated that the local sequence context affected bypass specificity; in addition, most erroneous TLS did not require Dbh function. Applying the technique to another common lesion, 7,8-dihydro-8-oxo-deoxyguanosine (8-oxo-dG), revealed an antimutagenic role of Dbh. The efficiency and accuracy of replication past 8-oxo-dG was higher in the presence of Dbh, and up to 90% of the Dbh-dependent events inserted dC. A third set of assays, based on phenotypic reversion, showed no effect of Dbh function on spontaneous -1 frameshifts in mononucleotide tracts in vivo, despite the extremely frequent slippage at these motifs documented in vitro. Taken together, the results indicate that a primary genetic role of Dbh is to avoid mutations at 8-oxo-dG that occur when other Sulfolobus enzymes replicate past this lesion. The genetic evidence that Dbh is recruited to 8-oxo-dG raises questions regarding the mechanism of recruitment, since Sulfolobus spp. have eukaryotic-like replisomes but no ubiquitin.
منابع مشابه
The Y-family DNA polymerase Dpo4 uses a template slippage mechanism to create single-base deletions.
The Y-family polymerases help cells tolerate DNA damage by performing translesion synthesis, yet they also can be highly error prone. One distinctive feature of the DinB class of Y-family polymerases is that they make single-base deletion errors at high frequencies in repetitive sequences, especially those that contain two or more identical pyrimidines with a 5' flanking guanosine. Intriguingly...
متن کاملMolecular characteristics of spontaneous deletions in the hyperthermophilic archaeon Sulfolobus acidocaldarius.
Prokaryotic genomes acquire and eliminate blocks of DNA sequence by lateral gene transfer and spontaneous deletion, respectively. The basic parameters of spontaneous deletion, which are expected to influence the course of genome evolution, have not been determined for any hyperthermophilic archaeon. We therefore screened a number of independent pyrimidine auxotrophs of Sulfolobus acidocaldarius...
متن کاملUV stimulation of chromosomal marker exchange in Sulfolobus acidocaldarius: implications for DNA repair, conjugation and homologous recombination at extremely high temperatures.
The hyperthermophilic archaeon Sulfolobus acidocaldarius exchanges and recombines chromosomal markers by a conjugational mechanism, and the overall yield of recombinants is greatly increased by previous exposure to UV light. This stimulation was studied in an effort to clarify its mechanism and that of marker exchange itself. A variety of experiments failed to identify a significant effect of U...
متن کاملGenetic fidelity under harsh conditions: analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius.
Microbes whose genomes are encoded by DNA and for which adequate information is available display similar genomic mutation rates (average 0.0034 mutations per chromosome replication, range 0.0025 to 0.0046). However, this value currently is based on only a few well characterized microbes reproducing within a narrow range of environmental conditions. In particular, no genomic mutation rate has b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 201 2 شماره
صفحات -
تاریخ انتشار 2015